A classification of irreducible admissible mod $p$ representations of $p$-adic reductive groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CLASSIFICATION OF THE IRREDUCIBLE ADMISSIBLE GENUINE MOD p REPRESENTATIONS OF p-ADIC S̃L2

We classify the irreducible, admissible, smooth, genuine mod p representations of the metaplectic double cover of SL2(F ), where F is a p-adic field and p 6= 2. We show, using a generalized Satake transform, that each such representation is isomorphic to a certain explicit quotient of a compact induction from a maximal compact subgroup by an action of a spherical Hecke operator, and we define a...

متن کامل

THE CLASSIFICATION OF IRREDUCIBLE ADMISSIBLE MOD p REPRESENTATIONS OF A p-ADIC GLn

Let F be a finite extension of Qp. Using the mod p Satake transform, we define what it means for an irreducible admissible smooth representation of an F -split p-adic reductive group over Fp to be supersingular. We then give the classification of irreducible admissible smooth GLn(F )-representations over Fp in terms of supersingular representations. As a consequence we deduce that supersingular...

متن کامل

SMOOTH REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS

Smooth representations of p-adic groups arise in number theory mainly through the study of automorphic representations, and thus in the end, for example, from modular forms. We saw in the first lecture by Matt Emerton that a modular form, thought of as function on the set of lattices with level N structure, we obtain a function in C(GL2(Z)\GL2(R) × GL2(Z/N),C) satisfying certain differential eq...

متن کامل

ADMISSIBLE NILPOTENT COADJOINT ORBITS OF p-ADIC REDUCTIVE LIE GROUPS

The orbit method conjectures a close relationship between the set of irreducible unitary representations of a Lie group G, and admissible coadjoint orbits in the dual of the Lie algebra. We define admissibility for nilpotent coadjoint orbits of p-adic reductive Lie groups, and compute the set of admissible orbits for a range of examples. We find that for unitary, symplectic, orthogonal, general...

متن کامل

Introduction to admissible representations of p-adic groups

The motivation for the construction is classical. The group GL2(R) acts on the space of all symmetric 2 × 2 real matrices: X : S 7−→ XS X , and preserves the open cone C of positive definite matrices. The quotient PGL2(R) therefore acts on the space P(C), which is the quotient of such matrices modulo positive scalars. The isotropy subgroup of I is the imageO(2) = O(2)/{±I} inPGL2(R), so that P(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 2016

ISSN: 0894-0347,1088-6834

DOI: 10.1090/jams/862